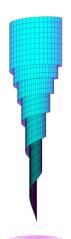
ITI HiFunMat Master Internship Proposal

 \boxtimes M 1 \boxtimes M 2

Deciphering the R-body Extension-retraction Mechanism

Internship supervisor


Name, first name	Schmatko Tatiana, Kulic Igor
E-mail, Telephone	schmatko@unistra.fr, kulic@unistra.fr
Laboratory	Institut Charles Sadron, Mcube team (soft matter and membranes)
Collaboration with a HiFunMat member (please indicate their name)	□ No ⊠ Yes : Laurent Pieuchot, Laurent.pieuchot@uha.fr

Student profile looked for

Master program (more than one box can be ticked)	☐ Material science and engineering ☐ Chemistry ☐ Physics
Other indications if necessary	The Institut Charles Sadron (ICS-Strasbourg. France) and the Institut de Sciences des Materiaux de Mulhouse (IS2M-Mulhouse France) are looking for a motivated master student in Experimental Physics, Material Physics or Biophysics with a taste for interdisciplinarity .

Internship description

R-bodies are unique molecular pistons produced by endosymbiotic bacteria that can switch in a fraction of second from enrolled 500nm ribbons to 20 microns membrane-perforating needles. Their extension is triggered by pH variation via a mechanism that remains unclear. Within this internship the student will start deciphering R-bodies' extension-retraction cycle dynamics and mechanism by combining optical microscopy imaging, force spectroscopy methods and theoretical models.

The R-bodies will be produced in E.coli in Mulhouse by our ITI-HiFunMat partner. The student will immobilize R-bodies inside chambers allowing rapid buffer exchange. He will assess the influence of buffer viscosity on R-bodies dynamics and the force generated during extension using, micrometer beads, high speed optical microscopy imaging and optical tweezers.

The longer-term vision is to develop the first biophysical model integrating the experimental results on the thermodynamics and kinetics of the R-body phase transition and to ultimately tame this powerful and unique nano-machine for future applications.