Hierarchical & Functional Materials for health, environment & energy | The Interdisciplinary thematic institutes HiFunMat of the University of Strasbourg & & Inserm funded under the Excellence Initiative program ()

ITI HiFunMat Master Internship Proposal

□ M 1

⊠ M 2

Title: TIGERsens -TiO₂-Gated organic Electrochemical TRansistor (OECT) for light-activated sensing

Internship supervisor

Name, first name	Bardagot, Olivier
E-mail, Telephone	olivier.bardagot@cnrs.fr
Laboratory	ICPEES
Collaboration with a HiFunMat member (<i>please indicate their name</i>)	\Box No \boxtimes Yes : Cottineau, Thomas

Student profile looked for

Master program (<i>more than one box can be ticked</i>)	\boxtimes Material science and engineering \square Chemistry \square Physics
Other indications if necessary	An interest in organic semiconducting polymers, electrochemistry and device manufacturing is preferred.

Internship description

The main task of this **6-month M2 internship** is to manufacture and characterize **original organic electrochemical transistors** (OECTs) for the **detection** of biomarkers. OECTs are a fast-growing technology used mainly for **heath applications** (e.g.: biosensors, electrophysiologic devices) whose detection limit are significantly lower than the current applied technologies. The main objective of the internship is to investigate the benefit of using a mesoporous **gate electrode made on TiO₂ nanotubes**. TiO₂ nanotubes present a **high capacitance** and can be **activated by light**, thereby offering unique features such as **spatial resolution** and **regeneration** of the sensor.

The student will work on this **hot topic** in a **pluri-disciplinary** environment including two teams of the ICPEES. He/she will be in charge of **fabricating OECTs** made of **PEDOT:PSS** channel and of **synthesizing mesoporous TiO₂ gate electrodes**. The student will then investigate the properties of these novel OECTs in different conditions of **irradiation** in 'test' aqueous electrolyte. Finally, the performances of the resulting biosensors will be tested in **'applicative' conditions** by replacing the test electrolyte by an **analyte containing bilirubin** for its detection. Bilirubin is a biomolecule generated during the breakdown of red blood cells. Its accurate and reversible detection would contribute to the early diagnosis of liver-related diseases in the hope of better treatment.

High quality results are expected, as demonstrated by our manuscript reporting record OECT performance for highly aligned polymers (10x higher than state-of-the-art), currently under review for publication in Nature Materials (<u>https://www.researchsquare.com/article/rs-3221543/v1</u>).

Daily work will include:

- Bibliographic study of the impact of the gate porosity on the OECT response
- Processing of (semi)conducting polymers in solution (mainly PEDOT:PSS)
- Synthesizing TiO₂-Nanotubes gate electrodes
- Scanning electron microscopy (SEM) to visualize the resulting thin films and electrodes
- OECT manufacture
- Electrical characterization of electrochemical transistors (transfer, output)
- Time-resolved Vis/NIR absorbance spectroscopy during electrochemical doping
- Data analysis using Python (computing)
- Calibration and use in 'test' and 'applicative' conditions of novel biosensors

Hard skills which will be learnt:

- Bibliographic search
- Database management
- Semiconducting polymer design
- Electrochemical synthesis
- Polymer processing
- Vis-NIR absorbance spectroscopy
- Electrochemistry
- Computing (Python for heavy data analysis and graph plotting, LabVIEW if interested)

Soft, transferable, skills which will be learnt:

- Collaboration, teamwork
- Effective communication
- Scientific data presentation (oral and written in English)
- Project management (time management, supply management, etc)
- Progress reporting
- Creativity/independency (depending on the will of the student)

References:

- High-performance OECT manufacture: <u>O. Bardagot*</u>, P. Durand, S. Guchait, G. Rebetez, P. Cavassin, J. Réhault, M. Brinkmann, N. Leclerc, N. Banerji, *In Review Nature Materials*, 2023, 10.21203/rs.3.rs-3221543/v1
- 2. **OECT doping kinetics:** B. T. DiTullio, L. R. Savagian, <u>O. Bardagot</u>, M. De Keersmaecker, A. M. Österholm, N. Banerji, J. R. Reynolds, *J. Am. Chem. Soc.* **2023**, *145*, 122–134.
- 3. TiO₂ Nanotube synthesis: F. Gelb, Y.-C. Chueh, N. Sojic, V. Keller, D. Zigah, <u>T. Cottineau*</u>, Sustainable Energy Fuels **2020**, *4*, 1099–1104.
- 4. **TiO₂-based sensors:** D. Spitzer, <u>T. Cottineau</u>, N. Piazzon, S. Josset, F. Schnell, S. N. Pronkin, E. R. Savinova, V. Keller, *Angewandte Chemie International Edition* **2012**, *22*, 5334–5338.
- TiO₂-gated OECT: M.-J. Lu, F.-Z. Chen, J. Hu, H. Zhou, G. Chen, X.-D. Yu, R. Ban, P. Lin, W.-W. Zhao, *Small Structures* 2021, 2, 2100087.