Hierarchical & Functional Materials for health, environment & energy HiFunMa matic institutes bourg 🛛 6 🎟 6 🌐 👖 funded under the

Au/ (B OR C) DOPED g-C₃N₄/ TiO₂ NANOCOMPOSITES FOR PHOTOREDUCTION OF CO2 WITH WATER IN THE GAZ PHASE INTO CH4

Leila Hammoud^{1,2}, Valérie Caps¹, Joumana Toufaily², Taysir Hamieh², Valérie Keller¹

¹ ICPEES, UMR 7515 CNRS, 25 rue Becquerel 67087 Strasbourg cedex, France. ² MCEMA, Lebanese University, Beyrouth, Liban.

leila.hammoud@etu.unistra.fr.

ABSTRACT:

Photocatalytic CO₂ reduction with water in the gas phase (artificial photosynthesis) into methane is one of the most useful routes to recycle CO₂. Among of the possible semiconductor (SC) photocatalysts. $g-C_3N_4$ and TiO₂ are interesting due to their abundance, low cost, chemical and thermal stability, and non-toxicity. The limited solar absorption and high recombination rate of photogenerated charge carriers of these materials however severely impede their applications. Several strategies have been considered to overcome these limitations such as SC doping, heterojunction formation and co-catalyst addition. We have recently shown that an efficient heterojunction between C_3N_4 and TiO₂ could be engineered by polycondensing C₃N₄ precursors impregnated on pre-formed TiO₂ nanocrystallites acting as hard templates [1]. This method yields few layer C₃N₄ films in strong interaction with TiO₂, which give highly efficient Au/C₃N₄-TiO₂ photocatalysts for water splitting [1]. However, these composites did not allow us to get CH_4 in the photoreduction of CO_2 with H_2O in the gas phase using visible illumination.

Here we show that an efficient heterojunction with enhanced absorption properties can be constructed for CO₂ photoreduction with H₂O under visible light by a modified polycondensation method, using urea as C₃N₄ precursor together with boric or citric acid [2,3] which will dope the C₃N₄ structure. The nanocomposites Au/B-g-C₃N₄/TiO₂ and Au/C-g-C₃N₄/TiO₂ showed average CH₄ production rates (fig.1) during 10h (8 and 34 times higher, respectively, than those obtained on Au/TiO₂ or Au/g-C₃N₄/TiO₂).

Figure 1: Average CH₄ production rate (during 10 h) for Au/TiO₂, Au/g-C₃N₄/TiO₂ and Au/(B or C) doped g-C₃N₄/TiO₂.

References

 P. Jiménez Calvo, V. Caps, M. Chazzal, C. Colbeau Justin, V. Keller, Nano Energy, 75 (2020), 104888.
J. Fu, K. Liu, K. Jiang, H. Li, P. An, W. Li, N. Zhang, H. Li, X. Xu, H. Zhou, D. Tang, X. Wang., Adv. Sci., 6 (2019), 1900796. [3] Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, M. Wang, J. Shi, Carbon, 99 (2016), 111-117.